
Integrable modifications of Dicke and Jaynes–Cummings models, Bose–Hubbard dimers and

classical r-matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 205205

(http://iopscience.iop.org/1751-8121/43/20/205205)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/20
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 205205 (14pp) doi:10.1088/1751-8113/43/20/205205

Integrable modifications of Dicke and
Jaynes–Cummings models, Bose–Hubbard dimers and
classical r-matrices

T Skrypnyk

International School for Advanced Studies via Beirut 2-4, 34014 Trieste, Italy
and
Bogoliubov Institute for Theoretical Physics, Metrologichna st.14-b, Kiev 03143, Ukraine

E-mail: skrypnyk@sissa.it and tskrypnyk@imath.kiev.ua

Received 5 December 2009, in final form 22 March 2010
Published 28 April 2010
Online at stacks.iop.org/JPhysA/43/205205

Abstract
We consider quantum integrable systems associated with non-skew-symmetric
sl(2)-valued classical r-matrices. For a special class of such r-matrices we
construct a one-parametric family of integrable modifications of the ‘two-
level one-mode’ Jaynes–Cummings–Dicke Hamiltonians, with non-uniform
coupling constants, containing additional Kerr- and Stark-type nonlinearities.
We also construct a family of integrable Bose–Hubbard-type dimers and
a family of integrable models that unifies Bose–Hubbard- and Jaynes–
Cummings–Dicke-type models and may be called a ‘two-level, two-mode’
Jaynes–Cummings–Dicke model or a ‘spin generalization’ of a Bose–Hubbard
dimer. We diagonalize the constructed models with the help of the algebraic
Bethe ansatz technique in any irreducible representation of the sl(2)⊕N spin
algebra.

PACS numbers: 02.20.Sv, 02.20.Tw, 02.30.Ik

1. Introduction

The simplest model describing an interaction of a one mode of a radiation field with a molecule
of N two-level atoms is characterized by the following spin-boson Hamiltonian [1]:

ĤD = wb̂†b̂ +
N∑

k=1

gk

(
b̂Ŝ(k)

+ + b̂†Ŝ
(k)
−

)
+

N∑
k=1

εkŜ
(k)
3 , (1)

where the Bose operators b̂, b̂† describe the field of radiation, the components of sl(2)-spins
Ŝ

(k)
3 , Ŝ

(k)
± stand for the variables of the kth atom with the energies ± εk

2 and gk is the strength of
interaction of the field of radiation with the kth atom.
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In the case N = 1 and the representation of sl(2) with the highest weight λ = 1
2 ,

the Dicke model was solved by Jaynes and Cummings [2]. In the totally uniform case
gk ≡ g, εk ≡ ε, k ∈ 1, N , where N is arbitrary, the Dicke model was solved by Tavis and
Cummings [3]. The more complicated case of the Dicke model with the equal interaction
strength: gk ≡ g, k ∈ 1, N , different energies εk �= εl, k, l ∈ 1, N , and an arbitrary irreducible
representation of the sl(2)⊕N algebra was considered and exactly solved by Gaudin [4] (see
also [5–7]).

In quantum optics, except for the simplest Hamiltonian (1), its special modifications that
include additional nonlinear terms are frequently used. One of the most important of them is
the following Hamiltonian:

ĤmD = ĤD + VSt + VKerr

= wb̂†b̂ +
N∑

k=1

gk

(
b̂Ŝ(k)

+ + b̂†Ŝ(k)
−

)
+

N∑
k=1

εkŜ
(k)
3 + k1(b̂

†b̂)

N∑
k=1

Ŝ
(k)
3 + k2(b̂

†b̂)2, (2)

which includes coupling with a Kerr-like medium VKerr [8, 9] and Stark-shift term VSt [10].
In the present paper we consider the question of the complete quantum integrability of

the totally non-uniform Hamiltonian (2) with εk �= εl, gk �= gl, k, l ∈ 1, N , in an arbitrary
irreducible representation of the sl(2)⊕N spin algebra. It is interesting to note that for N > 1
in an arbitrary representation of sl(2)⊕N a general totally non-uniform Dicke Hamiltonian
(1) is not integrable, but the more complicated ‘modified’ Hamiltonian (2) is (in some cases)
integrable. More precisely, we show that there exists a one-parametric family of completely
integrable Hamiltonians (2) of the following explicit form:

Ĥ ′
mD = w2b̂

†
2b̂2 +

N∑
k=1

gk

(
b̂2Ŝ

(k)
+ + b̂

†
2Ŝ

(k)
−

)
+

N∑
k=1

εkŜ
(k)
3

+ (1 − c0)b̂
†
2b̂2

N∑
k=1

Ŝ
(k)
3 +

(
c0 − 1

2

)(
b̂
†
2b̂2

)2
, (3)

where w2 = w − cc0, εk = −(
2g2

k + w2 + c
)

and the parameters w, c0, c and gk are arbitrary.
Note that in the case c0 = 1

2 the Hamiltonian (3) contains only the Stark-shift term and in the
case c0 = 1 it contains only Kerr nonlinearity.

We also show that there exists the integrable ‘two-level, two-mode’ modified Dicke
Hamiltonian, i.e. the Hamiltonian of a system of two bosons, interacting with N spins, having
the following form:

Ĥ dD = w1b̂
†
1b̂1 + w2b̂

†
2b̂2 + 4c1c2

(
b̂
†
1b̂2 + b̂

†
2b̂1

)
+

N∑
k=1

((
c1b̂1g

−1
k − c2b̂2gk

)
Ŝ(k)

+ +
(
c1b̂

†
1g

−1
k − c2b̂

†
2gk

)
Ŝ

(k)
−

)

+
N∑

k=1

εkŜ
(k)
3 +

1

2

(
c0

(
N∑

k=1

Ŝ
(k)
3 − b̂

†
2b̂2

)
− (c0 − 1)b̂

†
1b̂1

)2

+
1

2

(
(c0 − 1)

(
N∑

k=1

Ŝ
(k)
3 − b̂

†
1b̂1

)
− c0b̂

†
2b̂2

)2

, (4)

where w1 = 2(w − (c0 − 1)c), w2 = 2(w − c0c), εk = −(
2c2

2g
2
k + 2c2

1g
−2
k + 2w − c(2c0 − 1)

)
and the parameters w, c0, c1, c2, c and gk are arbitrary. The Hamiltonian ĤmD is recovered
from the Hamiltonian Ĥ dD in one boson case (c1 = 0, b̂

†
1b̂1 = 0), after subtracting from it

2
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the integrals of motion (w − c0c)M̂ and 1
2

(
c2

0 + (c0 − 1)2
)
M̂2, where M̂ is the operator of a

number of excitations.
As a by-product of the model with the Hamiltonian (4) in the case N = 0 we obtain a

one-parametric family of integrable modifications of Bose–Hubbard dimer models with the
following Hamiltonian:

Ĥ BH = w1b̂
†
1b̂1 + w2b̂

†
2b̂2 + 4c1c2

(
b̂
†
1b̂2 + b̂

†
2b̂1

)
+

(
(1 − c0)b̂

†
1b̂1 − c0b̂

†
2b̂2

)2
. (5)

In the case c0 = 1
2 it coincides with the known integrable Bose–Hubbard Hamiltonian

[11, 12].
Our technique is based on an application of the algebra of Lax operators and classical r-

matrices. In more details, we develop our previous idea [18–23] that one can associate quantum
integrable systems not only with skew-symmetric classical r-matrices but also with non-skew-
symmetric ones. If, moreover, this r-matrix is ‘diagonal’ [20] one can also diagonalize
the corresponding integrable Hamiltonians by means of the algebraic Bethe ansatz. Let
us emphasize that contrary to skew-symmetric r-matrices, general non-skew-symmetric r-
matrices are not connected with quantum groups or related structures. That is why in a general
case our results cannot be obtained using a quantum group technique.

In the present paper we consider a class of examples of non-skew-symmetric classical
r-matrices rc(u, v) labeled by the parameter c0 and corresponding quantum integrable systems.
These r-matrices are the simplest possible generalizations of the skew-symmetric trigonometric
r-matrix and coincide with it in the special partial case c0 = 1

2 . It is interesting to note that,
although there exist many more complicated examples of non-skew-symmetric r-matrices [17–
23] even the simplest of them produce new interesting quantum integrable systems. Indeed,
in our previous papers [23, 24] we have used the r-matrices rc(u, v) in order to produce
new integrable fermionic systems of reduced BCS-type. In the present paper we utilize these
r-matrices in order to produce new integrable Dicke-type Hamiltonians containing additional
Stark- and Kerr-type nonlinearities (2). In more detail, we show that among the Lax operators
corresponding to these r-matrices there are Lax operators producing the Hamiltonians (3)–(5).
We diagonalize these Hamiltonians and the commutative algebra of the first integral by means
of the algebraic Bethe ansatz. It is necessary to note that the obtained integrable Hamiltonians
(3)–(4) also seem to be new in the more standard case of skew-symmetric trigonometric
r-matrices (case c0 = 1

2 ). In this partial case the Hamiltonian (3) does not contain Kerr-type
nonlinearity.

The structure of this paper is as follows: in the second section we explain general
relations of the theory of classical non-skew-symmetric r-matrices and the theory of quantum
integrable systems. In the third section we concentrate on concrete examples of classical (non-
skew-symmetric) r-matrices and the corresponding quantum integrable systems, namely, on
Bose–Hubbard-type dimers and two types of modified Dicke models.

2. Quantum integrable systems and classical r-matrices

2.1. Definitions and notations

Let g = sl(2) be the Lie algebra of traceless 2 × 2 matrices over the field of complex numbers.
Let {X3, X+, X−}, be the root basis in sl(2) with the commutation relations:

[X3, X±] = ±X±, [X+, X−] = 2X3.

3
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Definition 1. A function of two complex variables r(u1, u2) with values in the tensor square
of the algebra sl(2) is called a classical r-matrix if it satisfies the following ‘generalized’
classical Yang–Baxter equation [14–16]:

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2)] − [r32(u3, u2), r13(u1, u3)],

where r12(u1, u2) ≡ r(u1, u2) ⊗ 1, etc.

We will be interested only in the meromorphic r-matrices for which there exists a re-
parametrization u = u(s), v = v(t) such that the following decomposition holds true:

r(u(s), v(t)) = �

s − t
+ r0(u(s), v(t)), (6)

where r0(u(s), v(t)) is a holomorphic function with values in sl(2)⊗ sl(2),� ∈ sl(2)⊗ sl(2)

is the tensor Casimir: � = 1
2 (X+ ⊗ X− + X− ⊗ X+) + X3 ⊗ X3.

Moreover, in the present paper we will mainly consider ‘diagonal’ in the root basis
r-matrices of the following explicit form:

r(u, v) = (
1
2 r−(u, v)X+ ⊗ X− + 1

2 r+(u, v)X− ⊗ X+ + r3(u, v)X3 ⊗ X3
)
. (7)

2.2. Algebra of Lax operators

Using a classical r-matrix r(u, v), it is possible to define the ‘tensor’ Lie bracket in
the space of certain sl(2)-valued functions of u with the operator coefficients L̂(u) =
L̂3(u)X3 + L̂+(u)X+ + L̂−(u)X−:

[L̂1(u), L̂2(v)] = [r12(u, v), L̂1(u)] − [r21(v, u), L̂2(v)], (8)

where L̂1(u) = L̂(u) ⊗ 1, L̂2(v) = 1 ⊗ L̂(v).
The Lie bracket (8) has the following simple but important property, giving one a

possibility of constructing new quantum systems with a new Lax operator using known
quantum subsystems with the known Lax operators.

Proposition 2.1. Let the operators L̂(k)(u), k ∈ 1, N, have Lie bracket (8) and [L̂(k)(u),

L̂(l)(u)] = 0, k, l ∈ 1, N . Then the operator L̂(u) ≡ ∑N
k=1 L̂(k)(u) also satisfies the Lie

bracket (8).

For the case of diagonal r-matrices the commutation relations (8) written in the component
form are as follows:

[L̂−(u), L̂3(v)] = −(r3(u, v)L̂−(u) + r−(v, u)L̂−(v)), (9a)

[L̂+(u), L̂3(v)] = (r3(u, v)L̂+(u) + r+(v, u)L̂+(v)), (9b)

[L̂+(u), L̂−(v)] = − 1
2 (r−(u, v)L̂3(u) + r+(v, u)L̂3(v)), (9c)

[L̂3(u), L̂3(v)] = [L̂+(u), L̂+(v)] = [L̂−(u), L̂−(v)] = 0. (9d)

The components of the Lax operator L̂α(u) depend on an auxiliary parameter u and non-
commuting quantum dynamical variables. The form of this dependence is not arbitrary but
agrees with a structure of an r-matrix. In the following sections we will explicitly consider
several types of such dependencies.

4
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2.3. Quantum integrals

In this subsection we will explain the connection of classical non-skew-symmetric r-matrices
with quantum integrability. It was shown in our previous paper [20] that just like in the case
of classical r-matrix Lie–Poisson brackets [13–15] the Lie bracket (8) leads to an algebra of
mutually commuting quantum integrals.

Let us consider the following quadratic in generators of the Lax algebra operators:

τ̂ (u) = 1
2 (L̂3(u))2 + (L̂+(u)L̂−(u) + L̂−(u)L̂+(u)). (10)

In order to obtain quantum integrable systems one has to show that [τ̂ (u), τ̂ (v)] = 0. This
equality does not follow directly from the classical Poisson commutativity of τ(u) and τ(v)

with respect to the corresponding Lie–Poisson brackets because of the problem of ordering of
quantum operators. Nevertheless, the following theorem holds true [20].

Theorem 2.1. Let L̂(u) be the Lax operator satisfying the commutation relations (8). Assume
that in some open region U × U ⊂ C

2 the function r(u, v) is meromorphic and possesses
decomposition (6). Then the operator-valued function τ̂ (u) is a generator of a commutative
algebra, i.e.

[τ̂ (u), τ̂ (v)] = 0.

In the case of the r-matrices diagonal in the sl(2) basis, the algebraic structure of the
algebra of the Lax matrices permits one to diagonalize τ̂ (u) for all operators L̂(u), satisfying
the commutation relations (2.2), using the algebraic Bethe ansatz technique.

2.4. Algebraic Bethe ansatz

In this subsection we diagonalize the generating functions of the quantum integrals τ̂ (u) for
the case of the diagonal r-matrices (7) possessing the regularity property (6) and for the
corresponding algebra of Lax operators (2.2). The procedure is the same for the cases of all
types of diagonal r-matrices and all types of Lax operators in the representations possessing a
‘vacuum’ vector. That is why we proceed purely algebraically without fixation of the concrete
form of the Lax operator as a function of the spectral parameter.

In more details, let H be a space of an irreducible representation of the algebra of Lax
operators. Let us assume that there exists a vacuum vector |0〉 ∈ H such that

L̂3(u)|0〉 = �3(u)|0〉, L̂−(u)|0〉 = 0, (11)

and the whole space H is generated by the action of L̂+(u) on the vector |0〉.
Using the explicit form of the generating function (10) it is easy to show that the vector

|0〉 is an eigenvector of the generating function of the quantum Hamiltonians:

τ̂ (u)|0〉 = 1
2

(
�3(u)2 + ∂u�3(u) +

(
r−

0 (u, u) + r+
0 (u, u)

)
�3(u)

)|0〉,
where �3(u) is an eigenvector of L̂3(u) and we have used the equality

[L̂−(u), L̂+(u)] = 1
2

(
∂uL̂3(u) +

(
r−

0 (u, u) + r+
0 (u, u)

)
L̂3(u)

)
.

Let us now construct other eigenvectors of τ̂ (u) using the Bethe ansatz technique.
The following theorem holds true [20].

Theorem 2.2. Let the components L̂±(u), L̂3(u) of the quantum Lax operator L̂(u) satisfy
commutation relations (9) and r-matrix r(u, v) possess the decomposition (6) with u = s,

v = t . Let us consider vectors of the Bethe type:

|v1v2 . . . vM〉 = L̂+(v1)L̂
+(v2) . . . L̂+(vM)|0〉,

5
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where the complex parameters vi satisfy the following Bethe-type equations:

�3(vi) −
M∑

j=1,j �=i

r3(vj , vi) = r3
0 (vi, vi) − 1

2
(r+

0 (vi, vi) + r−
0 (vi, vi)), i ∈ 1, . . . , M.

(12)

Then the vectors |v1v2 . . . vM〉 are eigenvectors of the generating function of the quantum
Hamiltonians τ̂ (u) : τ̂ (u)|v1v2 . . . vM〉 = �(u|{vi})|v1v2 . . . vM〉 with the following
eigenvalues:

2�(u|{vi}) =
(

�3(u) −
M∑
i=1

r3(vi, u)

)2

−
M∑
i=1

r+(vi, u)r−(vi, u) +
(
r+

0 (u, u) + r−
0 (u, u)

)
�3(u) + ∂u�3(u). (13)

3. Dicke, Jaynes–Cummings and Bose–Hubbard-type models

3.1. sl(2)-‘twisted’ non-skew-symmetric r-matrices

Let us consider the non-skew-symmetric solution of the generalized classical Yang–Baxter
equation on sl(2) of the following explicit form (see [23]):

rc
12(u, v) =

(
v2

u2 − v2
+ c0

)
X3 ⊗ X3 +

uv

2(u2 − v2)
(X+ ⊗ X− + X− ⊗ X+), (14)

where c0 is an arbitrary constant.
It is evident that the considered r-matrix is diagonal in the sl(2) basis and

rc,3(u, v) = v2

u2 − v2
+ c0, rc,+(u, v) = rc,−(u, v) = uv

(u2 − v2)
.

Remark 1. A parametrization in which the r-matrix possesses the decomposition (6) is the
‘hyperbolic’ parametrization u2 = es, v2 = et . For such a parametrization one has that

r12(u(s), v(t)) = 1

s − t
X3 ⊗ X3 +

1

2(s − t)
(X+ ⊗ X− + X− ⊗ X+) + r0

12(s − t).

In this parametrization it is easy to show that r
c,3
0 (u, u) = c0 − 1

2 , r
c,+
0 (u, u) = r

c,−
0 (u, u) = 0.

Remark 2. The considered non-skew-symmetric r-matrix (14) is the simplest generalization
of a skew-symmetric trigonometric r-matrix and coincides with it in the special case c0 = 1

2 .

3.2. Lax algebra and Bethe equations: general case

Having fixed a concrete classical r-matrix it is possible to obtain more explicitly the Bethe
equations and spectrum of the generating function of quantum integrals if the corresponding
Lax algebra possesses a representation with the vacuum vector.

By direct calculation it is easy to obtain the more explicit form of the Bethe
equations (12):

�3(vi) −
M∑

j=1,j �=i

v2
i

v2
j − v2

i

= Mc0 − 1

2
, i ∈ 1,M, (15)

where �3(vi) is an eigenvalue of the operator L̂3(vi) on the vacuum vector.

6
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Using the Bethe equations (15) and concrete form of the non-skew-symmetric r-matrix
it is possible to re-write formula (13) for the spectrum of the generating function of quantum
integrals as follows:

�(u|{vi}) = 1

2
(�3(u) − M(c0 − 1))2 +

M∑
i=1

v2
i (�3(vi) − �3(u))

v2
i − u2

+
1

2
∂s�3(u),

where u2 = es. (16)

From this formula one deduces that �(u|{vi}) does not have additional poles if u = vi .
Now we will fix the form of the Lax operator in order to specialize the integrable model

(i.e. its phase space, explicit form of Hamiltonian and quantum integrals) and in order to
obtain a more explicit form of the Bethe equations (15) and a more explicit expression for the
spectrum (16).

In the present paper we will be interested in special Lax operators L̂(u) possessing poles
of an order not higher than one in the spectral parameter u2.

The following proposition holds true.

Proposition 3.1. Each of the following sl(2)-valued functions of u with operator coefficients

L̂(∞)(u) = (−c0b̂
†
2b̂2 + c

)
X3 + u

(
c2b̂2X+ + c2b̂

†
2X−

)
+ 2u2c2

2X3, (17a)

L̂(0)(u) = (
(1 − c0)b̂

†
1b̂1 + c′)X3 + u−1(c1b̂1X+ + c1b̂

†
1X−

) − u−22c2
1X3, (17b)

L(gi)(u) =
(

u2

g2
i − u2

+ c0

)
Ŝ

(i)
3 X3 +

ugi

2
(
g2

i − u2
)(

Ŝ(i)
+ X− + Ŝ

(i)
− X+

)
(17c)

satisfies the linear r-matrix algebra (2.2). Here c, c′, c1, c2, gi, i ∈ 1, N , are the arbitrary
constants, b̂

†
i , b̂j , i, j ∈ 1, 2, constitute the Heisenberg algebra[

b̂
†
i , b̂j

] = δij , [b̂i , b̂j ] = [
b̂
†
i , b̂

†
j

] = 0, (18)

and the operators Ŝ
(i)
± , Ŝ

(i)
3 , i ∈ 1, N , constitute the spin sl(2)⊕N algebra in some

representation:[
Ŝ(i)

+ , Ŝ
(j)
−

] = 2δij Ŝ
(i)
3 ,

[
Ŝ(i)

+ , Ŝ
(j)

3

] = −δij Ŝ
(i)
+ ,

[
Ŝ

(i)
− , Ŝ

(j)

3

] = δij Ŝ
(i)
− ,[

Ŝ(i)
+ , Ŝ

(j)
+

] = [
Ŝ

(i)
− , Ŝ

(j)
−

] = [
Ŝ

(i)
3 , Ŝ

(j)

3

] = 0.

Remark 3. Note that the constants c, c′ in the Lax operators (17a), (17b) play the role of the
‘argument shift’ [22]. It will be sufficient to keep only one of them, putting c′ = 0.

Using the Lax operators constructed in this proposition and proposition 2.1 it is possible
to construct from the ‘elementary’ Lax operators (17) the Lax operator of interacting systems.
For example, if one considers the sum of the Lax operators (17c) for different points gk, one
arrives at the Lax operator of the Gaudin-type systems considered in our paper [23]. If one
considers other combinations of the Lax operators (17a)–(17c), one comes to other quantum
integrable systems. In the next subsection we will consider them in detail.

3.3. Example 1. Bose–Hubbard-type dimer

3.3.1. Lax operators and commuting integrals. Let us consider at first the simplest
combination of the Lax matrices (3.1), namely

L̂(u) = L̂(∞)(u) + L̂(0)(u).

7



J. Phys. A: Math. Theor. 43 (2010) 205205 T Skrypnyk

This will be the Lax operator of the Bose–Hubbard-type dimer. It has the following
components:

L̂3(u) = 2u2c2
2 +

(
(1 − c0)b̂

†
1b̂1 − c0b̂

†
2b̂2 + c

) − 2u−2c2
1, L̂+(u) = uc2b̂2 + u−1c1b̂1,

L̂−(u) = uc2b̂
†
2 + u−1c1b̂

†
1.

Let us now consider the generating function τ̂ (u) and commutative integrals it produces via
the decomposition τ̂ (u) = ∑2

k=−2 u2kĤ 2k . By a direct calculation it is easy to show that
H4 = 2c4

2,H−4 = 2c4
1 and non-trivial Hamiltonians have the following form:

Ĥ 0 = 1
2

(
(1 − c0)b̂

†
1b̂1 − c0b̂

†
2b̂2 + c

)2
+ 2c1c2

(
b̂
†
1b̂2 + b̂

†
2b̂1

) − 4c2
1c

2
2,

Ĥ 2 = 2c2
2

(
(1 − c0)

(
b̂
†
1b̂1 + b̂

†
2b̂2

)
+ c − 1

2

)
,

Ĥ−2 = 2c2
1

(
c0

(
b̂
†
1b̂1 + b̂

†
2b̂2

) − c − 1
2

)
.

The integrals Ĥ 2, Ĥ−2 are proportional up to a constant to the operator of the number of
particles M̂ ≡ b̂

†
1b̂1 + b̂

†
2b̂2. The generalized Bose–Hubbard dimer Hamiltonian obtained in

the framework of our construction is Ĥ BH = wM̂ + Ĥ 0 + 4c2
1c

2
2 − c2

2 . It has has the form

Ĥ BH = w1b̂
†
1b̂1 + w2b̂

†
2b̂2 + 2c1c2

(
b̂
†
1b̂2 + b̂

†
2b̂1

)
+ 1

2

(
(1 − c0)b̂

†
1b̂1 − c0b̂

†
2b̂2

)2
,

where w1 = w + c(1 − c0), w2 = w − cc0. In the partial case c0 = 1
2 it coincides with the

standard Bose–Hubbard dimer Hamiltonian [12].

Remark 4. Note that by the re-parametrization of the spectral parameter u one can eliminate
one of the coefficients ci, i ∈ 1, 2, from a Lax operator, Hamiltonians, Bethe equations, etc.
We have left both coefficients in all formulas in order to preserve symmetry between the
bosons. Also note that it was necessary for the ‘shift parameter’ c to provide the independence
of the frequencies w1 and w2 in the Hamiltonian Ĥ BH .

3.3.2. Spectrum. Let us now pass to a calculation of the spectrum of τ̂ (u) and Ĥ i . The
representation space of the Heisenberg algebra (18) evidently admits the vacuum vector |0〉
such that

b̂
†
i |0〉 = 0, i ∈ 1, 2, and L̂−(u)|0〉 = 0.

It is easy to show that in this case we have L̂3(u)|0〉 = �3(u)|0〉, where

�3(u) = −2u−2c2
1 + (1 − 2c0 + c) + 2u2c2

2.

The eigenvalues of t̂ (u) are calculated using formula (16) and have the following form:

�(u|{vi}) = 2u−4c2
1 + u−2h−2 + h0 + u2h2 + 2u4c4

2,

where vi satisfy Bethe-type equations obtained by a specialization of formula (15):

−2v−2
i c2

1 +

(
3

2
+ c − c0(M + 2)

)
+ 2v2

i c
2
2 =

M∑
j=1,j �=i

v2
i

v2
j − v2

i

, i ∈ 1,M. (19)

By a direct calculation, specializing the general formula (16), one obtains the spectrum of Ĥ 0

and Ĥ±2:

h0 = 2c2
2

M∑
i=1

v2
i +

1

2
((1 − c0)(M + 2) + c − 1)2 − 4c2

1c
2
2,

h2 = 2c2
2

(
(1 − c0)(M + 2) + c − 1

2

)
, h−2 = 2c2

1

(
(c0(M + 2) − c − 1

2

)
,

where vi , i ∈ 1,M, are the solutions of equations (19) and (M + 2) is an eigenvalue of M̂ .
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3.4. Example 2. Modified Dicke model

3.4.1. Lax operators and commuting integrals. Let us now consider more complicated Lax
matrices namely the Lax matrices with N + 1 simple poles in u2 of the following form:

L̂(u) = L̂(∞)(u) +
N∑

k=1

L̂(gk)(u).

As we will show below, this Lax matrix will correspond to the integrable Dicke-type spin-boson
model. It has the following components:

L̂3(u) =
(

(c0 − 1)

N∑
k=1

Ŝ
(k)
3 − c0b̂

†
2b̂2 + c

)
+ 2c2

2u
2 +

N∑
k=1

g2
k Ŝ

(k)
3

g2
k − u2

, (20)

L̂+(u) = u

(
c2b̂2 +

N∑
k=1

gkŜ
(k)
−

2
(
g2

k − u2
)
)

, L̂−(u) = u

(
c2b̂

†
2 +

N∑
k=1

gkŜ
(k)
+

2
(
g2

k − u2
)
)

. (21)

Let us consider the generating function τ̂ (u) and the commutative integrals it produces via the
decomposition

τ̂ (u) =
2∑

k=0

u2kĤ 2k +
N∑

k=0

g2
k

g2
k − u2

Ĥ gk
+

N∑
k=0

g4
k(

u2 − g2
k

)2 Ĉgk
.

Using the explicit expression for the components of the Lax operators (20) it is easy to show
that Ĉgk

coincides with a Casimir operator of the kth copy of the sl(2) Lie algebra:

Ĉgk
= 1

2

((
Ŝ

(k)
3

)2
+ 1

2

(
Ŝ(k)

+ Ŝ
(k)
− + Ŝ

(k)
− Ŝ(k)

+

))
, k ∈ 1, N.

Other non-trivial integrals are

Ĥ gk
= c2gk

(
b̂2Ŝ

(k)
+ + b̂

†
2Ŝ

(k)
−

)
+ 2c2

2g
2
k Ŝ

(k)
3 +

1

2

(
Ŝ

(k)
3

)2
+

(
(c0 − 1)

N∑
l=1

Ŝ
(l)
3 − c0b̂

†
2b̂2 + c

)
Ŝ

(k)
3

+
N∑

l=1,l �=k

(
2g2

l Ŝ
(k)
3 Ŝ

(l)
3 + gkgl

(
Ŝ

(k)
+ Ŝ

(l)
− + Ŝ

(k)
− Ŝ

(l)
+

)
2
(
g2

l − g2
k

)
)

− Ĉgk
,

Ĥ 0 = −c2

(
b̂2

N∑
k=1

gkŜ
(k)
+ + b̂

†
2

N∑
k=1

gkŜ
(k)
−

)

− 2c2
2

N∑
k=1

g2
k Ŝ

(k)
3 +

1

2

(
(c0 − 1)

N∑
k=1

Ŝ
(k)
3 − c0b̂

†
2b̂2 + c

)2

,

Ĥ 2 = 2c2
2

(
(c0 − 1)

( N∑
k=1

Ŝ
(k)
3 − b̂

†
2b̂2

)
+ c − 1

2

)
= 2c2

2

(
(1 − c0)M̂ + c − 1

2

)
,

where the integral M̂ ≡ b̂
†
2b̂2 − ∑N

k=1 Ŝ
(k)
3 is the operator of the number of excitations.

Not all of the above Hamiltonians are independent. By direct calculation one obtains

N∑
k=1

(Ĥ gk
+ Ĉgk

) + Ĥ 0 = 1

2

(
c0

(
N∑

k=1

Ŝ
(k)
3 − b̂

†
2b̂2

)
+ c

)2

= 1

2
(c0M̂ + c)2.

9
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One may take for the modified Dicke Hamiltonian the linear combination of the
Hamiltonians M̂ and Ĥ 0: ĤmD = wM̂ + Ĥ 0 + c2

2 and obtain the following Dicke-type
Hamiltonian:

ĤmD = w2b̂
†
2b̂2 +

N∑
k=1

gk

(
b̂2Ŝ

(k)
+ + b̂

†
2Ŝ

(k)
−

) −
N∑

k=1

(
c + 2g2

k + w2
)
Ŝ

(k)
3

+
1

2

(
(c0 − 1)

N∑
k=1

Ŝ
(k)
3 − c0b̂

†
2b̂2

)2

, (22)

where w2 ≡ w − cc0 and we have put c2 = −1 (this condition can always be achieved
by re-parametrization of spectral parameters and parameters gk) and the parameters w, c0, c
are arbitrary. The Hamiltonian (3) is obtained from the Hamiltonian (22) by subtracting the
integral of motion 1

2 (c0 − 1)2M̂2 from it.
The Hamiltonian ĤmD may be interpreted as a Hamiltonian of a one mode of an

electromagnetic field interacting with a molecule of N two-level atoms with coupling constants
gk and detuning parameters 
k = −(

2g2
k +c

)
dependent on a number k of atoms in a molecule.

The last term in the Hamiltonian (22) is not present in the standard Dicke Hamiltonian. The
presence of this term in the Hamiltonian ĤmD is necessary in order to preserve the integrability
of the model in the non-uniform case.

Remark 5. In the case N = 1, the Hamiltonian (22) coincides with the modification of the
Jaynes–Cummings Hamiltonian and has the following simple form:

ĤmJC = w2b̂
†
2b̂2 + g

(
b̂2Ŝ+ + b̂

†
2Ŝ−

) − (2g2 + w2 + c)Ŝ3 + 1
2

(
(c0 − 1)Ŝ3 − c0b̂

†
2b̂2

)2
.

3.4.2. Spectrum. Let us now pass to a calculation of the spectrum of τ̂ (u) and Ĥ i . For this
purpose it is necessary to consider a representation of the Lax algebra in some Hilbert space H.
In our case the Lax algebra is isomorphic to the algebra H ⊕ sl(2)⊕N , where H is a Heisenberg
algebra generated by the elements b

†
2, b2. Due to the fact that any irreducible representation

of a direct sum of the Lie algebras is a tensor product of irreducible representations of its
components, we will have H = V ⊗ V λ1 ⊗ V λ2 ⊗ · · · ⊗ V λN , where V λk is an irreducible
finite-dimensional representation of the kth copy of sl(2) with the spin λk, λk ∈ 1

2 N, and V
is an irreducible representation of the Heisenberg algebra H. Each of the representations V λk

contains the highest weight vector vλk
such that

Ŝk
+vλk

= 0, Ŝk
3 vλk

= λkvλk
and b̂

†
2v2 = 0,

where v2 is the ‘highest vector’ of the Heisenberg algebra in the space V. Let us now consider
the following ‘vacuum’ vector in the space H: |0〉 = v2 ⊗ vλ1 ⊗ · · · ⊗ vλN

. We have

L̂−(u)|0〉 = 0, L̂3(u)|0〉 = �3(u)|0〉,
where

�3(u) =
(

c0

N∑
k=1

λk + (c − c0) + 2c2
2u

2 +
N∑

k=1

λku
2

g2
k − u2

)

by the very definition of L̂−(u) and L̂3(u).
By a direct calculation we obtain the following explicit form of the Bethe equations (15):

c0

(
N∑

l=1

λl − M − 1

)
+ c +

1

2
+ 2c2

2v
2
i +

N∑
l=1

λlv
2
i

g2
l − v2

i

=
M∑

j=1,j �=i

v2
i

v2
j − v2

i

, i ∈ 1,M. (23)

10
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It is possible to write the formula for the spectrum of the generating function of quantum
integrals (13) in this case in the following explicit form:

�(u|{vi}) =
2∑

k=0

u2kh2k +
N∑

k=0

g2
k

g2
k − u2

hgk
+

N∑
k=0

g4
k(

u2 − g2
k

)2 cgk
,

where

h4 = 2c4
2, cgk

= 1

2
λk(λk + 1), h2 = 2c2

2

(
(c0 − 1)

(
N∑

l=1

λl − M

)
+ (c − c0) +

1

2

)
,

h0 = 1

2

(
(c0 − 1)

(
N∑

l=1

λl − M

)
+ (c − c0)

)2

+ 2c2
2

M∑
i=1

v2
i − 2c2

2

N∑
l=1

λlg
2
l ,

hgk
= λk

(
M∑
i=1

v2
i

g2
k − v2

i

+
N∑

l=1,l �=k

λlg
2
l

g2
l − g2

k

+ 2c2
2g

2
k + (c0 − 1)

(
N∑

l=1

λl − M

)
+ (c − c0) − 1

2

)
.

Here v2
i , i ∈ 1, N, are the solutions of (23) and (M + 1 − ∑N

l=1 λl) is a spectrum of M̂ .

3.5. Example 3. ‘Two-level, two-boson’ Dicke model

3.5.1. Lax operators and commuting integrals. Let us now consider the most general Lax
matrix that can be obtained using proposition 3.1, namely the Lax operators of the following
explicit form:

L̂(u) = L̂(∞)(u) + L̂(0)(u) +
N∑

k=1

L̂(gk)(u).

It has the following components:

L̂3(u) = 2c2
2u

2 − 2c2
1u

−2 +

(
(1 − c0)b̂

†
1b̂1 − c0b̂

†
2b̂2 + c + (c0 − 1)

N∑
k=1

Ŝ
(k)
3

)
+

N∑
k=1

g2
k Ŝ

(k)
3

g2
k − u2

,

L̂+(u) =
(

c1b̂1u
−1 + c2b̂2u +

N∑
k=1

ugkŜ
(k)
−

2
(
g2

k − u2
)
)

,

L̂−(u) =
(

c1b̂
†
1u

−1 + c2b̂
†
2u +

N∑
k=1

ugkŜ
(k)
+

2
(
g2

k − u2
)
)

.

Let us consider the generating function τ̂ (u) and the commutative integrals it produces via the
decomposition

τ̂ (u) =
2∑

k=−2

u2kĤ 2k +
N∑

k=0

g2
k

g2
k − u2

Ĥ gk
+

N∑
k=0

g4
k(

u2 − g2
k

)2 Ĉgk
.

It is easy to show that Ĉgk
coincides with a Casimir operator of the kth copy sl(2) Lie algebra.

Other trivial integrals are Ĥ 4 = 2c4
2, Ĥ−4 = 2c4

1. Non-trivial integrals have the form

Ĥ−2 = −2c2
1

(
c0

(
N∑

k=1

Ŝ
(k)
3 − b̂

†
1b̂1 − b̂

†
2b̂2

)
+ c +

1

2

)
,

Ĥ 2 = 2c2
2

(
(c0 − 1)

(
N∑

k=1

Ŝ
(k)
3 − b̂

†
1b̂1 − b̂

†
2b̂2

)
+ c − 1

2

)
,

11
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Ĥ gk
= c1

(
g−1

k b1Ŝ
(k)
+ + g−1

k b
†
1Ŝ

(k)
−

)
+ c2

(
gkb̂2Ŝ

(k)
+ + gkb̂

†
2Ŝ

(k)
−

)
+ 2c2

2g
2
k Ŝ

(k)
3 − 2c2

1g
−2
k Ŝ

(k)
3

+
1

2

(
Ŝ

(k)
3

)2
+

(
(c0 − 1)

N∑
k=1

Ŝ
(k)
3 − (c0 − 1)b̂

†
1b̂1 − c0b̂

†
2b̂2 + c

)
Ŝ

(k)
3

+
N∑

l=1,l �=k

(
2g2

l Ŝ
(k)
3 Ŝ

(l)
3 + gkgl

(
Ŝ

(k)
+ Ŝ

(l)
− + Ŝ

(k)
− Ŝ

(l)
+

))
2
(
g2

l − g2
k

) − Ĉgk
,

Ĥ 0 = 2c1c2
(
b̂
†
1b̂2 + b̂

†
2b̂1

) − c2

(
b̂2

N∑
k=1

gkŜ
(k)
+ + b̂

†
2

N∑
k=1

gkŜ
(k)
−

)
− 2c2

2

N∑
k=1

g2
k Ŝ

(k)
3

+
1

2

(
(c0 − 1)

N∑
k=1

Ŝ
(k)
3 − (c0 − 1)b̂

†
1b̂1 − c0b̂

†
2b̂2 + c

)2

− 4c2
1c

2
2.

It is easy to see that the Hamiltonians Ĥ±2 coincide up to non-important constants with the
operator of a number of excitations: M̂ ≡ b̂

†
1b̂1 + b̂

†
2b̂2 − ∑N

k=1 Ŝ
(k)
3 . Using the Hamiltonians

Ĥ gk
it is possible to construct a counterpart of the Hamiltonian Ĥ 0: Ĥ ′

0 = ∑N
k=1(Ĥ gk

+ Ĉgk
)+

Ĥ 0. It has the following form:

Ĥ ′
0 = 2c1c2

(
b̂
†
1b̂2 + b̂

†
2b̂1

)
+ c1

(
b̂1

N∑
k=1

g−1
k Ŝ(k)

+ + b̂
†
1

N∑
k=1

g−1
k Ŝ

(k)
−

)
− 2c2

1

N∑
k=1

g−2
k Ŝ

(k)
3

+
1

2

(
c0

N∑
k=1

Ŝ
(k)
3 − (c0 − 1)b̂

†
1b̂1 − c0b̂

†
2b̂2 + c

)2

− 4c2
1c

2
2.

Using the integrals Ĥ ′
0, Ĥ 0 and number of particle operators M̂ one constructs the ‘two-level,

two-mode’ Dicke Hamiltonian (spin-dimer Hamiltonian) Ĥ = 2wM̂ + Ĥ ′
0 + Ĥ 0 + 8c2

1c
2
2 − c2:

Ĥ = w1b̂
†
1b̂1 + w2b̂

†
2b̂2 + 4c1c2

(
b̂
†
1b̂2 + b̂

†
2b̂1

)
+

N∑
k=1

((
c1b̂1g

−1
k − c2b̂2gk

)
Ŝ(k)

+ +
(
c1b̂

†
1g

−1
k − c2b̂

†
2gk

)
Ŝ

(k)
−

)

+
N∑

k=1

εkŜ
(k)
3 +

1

2

(
c0

(
N∑

k=1

Ŝ
(k)
3 − b̂

†
2b̂2

)
− (c0 − 1)b̂

†
1b̂1

)2

+
1

2

(
(c0 − 1)

(
N∑

k=1

Ŝ
(k)
3 − b̂

†
1b̂1

)
− c0b̂

†
2b̂2

)2

,

where w1 = 2(w−(c0−1)c), w2 = 2(w−c0c) and εk = −(
2c2

2g
2
k +2c2

1g
−2
k +2w−c(2c0−1)

)
.

3.5.2. Spectrum. Let us now pass to a calculation of the spectrum of τ̂ (u) and Ĥ i . For
this purpose we will consider an irreducible representation of the Lax algebra in some Hilbert
space H. The Lax algebra in our case is isomorphic to the algebra H⊕2 ⊕ sl(2)⊕N , where H⊕2

is the Heisenberg algebra generated by the elements b̂
†
i , b̂i , i ∈ 1, 2. Due to the fact that any

irreducible representation of a direct sum of the Lie algebras is a tensor product of irreducible
representations of its components, we will have H = V ⊗ V λ1 ⊗ V λ2 ⊗ · · · ⊗ V λN , where V λk

is an irreducible finite-dimensional representation of the kth copy of sl(2) with the spin λk ,
where λk ∈ 1

2 N and V is an irreducible representation of the Heisenberg algebra H⊕2. Each
representation V λk contains a highest weight vector vλk

such that

Ŝk
+vλk

= 0, Ŝk
3 vλk

= λkvλk
and b̂

†
i v = 0, i ∈ 1, 2,

12
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where v is the ‘highest vector’ of the Heisenberg algebra in the space V. Let us now consider
the following ‘vacuum’ vector in the space H: |0〉 = v ⊗ vλ1 ⊗ · · · ⊗ vλN

. We have that

L̂−(u)|0〉 = 0, L̂3(u)|0〉 = �3(u)|0〉,
where

�3(u) = 2c2
2u

2 − 2c2
2u

2 +
N∑

k=1

λkg
2
k

g2
k − u2

+ (c0 − 1)

N∑
k=1

λk + (c + 1 − 2c0)

due to the very definition of L̂−(u) and L̂3(u).
Using the explicit form of �3(u) we obtain the explicit form of the Bethe equations (15):(

c0

(
N∑

k=1

λk − M − 2

)
+ c +

3

2

)
+

(
2c2

2v
2
i − 2c2

1v
−2
i +

N∑
k=1

λkv
2
i

g2
k − v2

i

)

=
M∑

j=1,j �=i

v2
i

v2
j − v2

i

, i ∈ 1,M.

By a direct calculation, using formula (16), it is possible to write explicitly the formula for the
spectrum of the generating function of quantum integrals:

�(u|{vi}) =
2∑

k=−2

u2kh2k +
N∑

k=0

g2
k

g2
k − u2

hgk
+

N∑
k=0

g4
k(

u2 − g2
k

)2 cgk
,

where h4 = 2c4
2, h−4 = 2c4

1, cgk
= 1

2λk(λk + 1) and the eigenvalues of the non-trivial integrals
are

h−2 = −2c2
1

(
c0

(
N∑

k=1

λk − M − 2

)
+ c +

1

2

)
,

h2 = 2c2
2

(
(c0 − 1)

(
N∑

k=1

λk − M − 2

)
+ c − 1

2

)
,

h0 = 2c2
2

M∑
i=1

v2
i − 2c2

1

N∑
k=1

λkg
2
k +

1

2

(
(c0 − 1)

(
N∑

k=1

λk − M − 2

)
+ c − 1

)2

− 4c2
1c

2
2,

hgk
= λk

(
M∑
i=1

v2
i

g2
k − v2

i

+
N∑

l=1,l �=k

λlg
2
l

g2
l − g2

k

+ 2c2
2g

2
k − 2c2

1g
−2
k

+ (c0 − 1)

(
N∑

k=1

λk − M − 2

)
+ c − 3

2

)
.

Here v2
i are the solutions of the Bethe equations, and

(
M + 2−∑N

k=1 λk

)
is the eigenvalue

of M̂ .

4. Conclusion and discussion

In the present paper we have constructed a one-parametric family of integrable modifications
of the ‘two-level one-mode’ Jaynes–Cummings–Dicke Hamiltonians, a family of integrable
Bose–Hubbard-type dimers and a family of integrable models that may be called ‘two-
level, two-mode’ Jaynes–Cummings–Dicke models. We have calculated the spectrum of
the quantum Hamiltonians of the proposed models using the algebraic Bethe ansatz.
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It would be very interesting to find other physical quantities of these models. In particular
it seems to be possible to construct correlation functions of the proposed models using r-matrix
and Bethe ansatz techniques. For this purpose it is necessary to generalize the approach of
[25] from the Gaudin to Dicke models and from the case of skew-symmetric r-matrices to
non-skew-symmetric cases. We plan to return to this problem in our future publications.
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